Advanced Chemistry	
Calculating/Converting	Pressure

Instructions: Calculate the following pressure problems. SHOW ALL WORK. Round your answer to the correct number of significant figures. *Make sure you have the correct units!

- 1) Calculate the pressure, in Pascals, produced by a force of 800.0 N acting on an area of 2.000 m².
- 2) The pressure of a gas contained in a cylinder with a moveable piston is 300.0 Pa. The area of the piston is 0.500 m². Calculate the force that is exerted on the piston.

3) Find the pressure, in Pascals, of a stand that has a mass of 254.0 kg and an area of 20.00 m^2 .

4) Suppose a woman that has a mass of 59007.02 grams and wearing high-heeled shoes momentarily places all her mass on the heel of one foot. If the area of the heel is 0.000645160 in², calculate the pressure exerted in **pascals**.

Instructions: Convert the following pressure values to the correct units using conversion factors. SHOW ALL WORK. Round your answer to the correct number of significant figures. *Make sure you have the correct units!

- 1) The typical atmospheric pressure on top of Mt. Everest (29,028 ft) is about 265.0 torr. Convert this pressure to:
 - a) atm

b)	pascals
c)	psi
	form the following conversions: 0.6850 bar to kilopascals
·	
b)	655.0 mm Hg to atmospheres
c)	44.10 psi to torr